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The role of drift mass in the kinetic
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For two-dimensional periodic water waves or sound waves, the kinetic energy per
wavelength is "

#
m

d
c#, and the momentum per wavelength is ³m

d
c, where c is the wave

velocity, and m
d

is the drift mass per wavelength. These results also hold for three-
dimensional periodic waves, for which the kinetic energy, momentum, and drift mass
are all for one wave cell, the area of which is the product of the wavelengths in two
perpendicular directions.

The results obtained are rigorous, and not restricted to linear waves or even to
nonlinear symmetric waves. For linear water waves, in particular, the kinetic energy
can be shown to be equal to the sum of the potential energy and the surface energy (due
to surface tension), so that the total energy E is twice the kinetic energy, and

E¯m
d
c#.

McIntyre’s (1981) contention that wave momentum is a myth is discussed at length
for both water waves and sound waves.

1. Introduction

Since this article has to do with the kinetic energy, the momentum, and the drift mass
of periodic irrotational water waves and sound waves, it is appropriate to recall briefly
what is known about these subjects that has a close bearing on the results given herein.

Early in this century Levi-Civita (1912, 1921) showed that, for periodic water waves,
twice the kinetic energy per wavelength is equal to the momentum per wavelength times
the wave velocity c. But he did not relate either quantity to the drift mass, although
drift in water waves was not unknown in his time. Midway through this century and
in the same year, Ursell (1953) and Longuet-Higgins (1953) studied mass transport in
periodic water waves, and Darwin (1953) studied fluid drift caused by a body moving
(along the x-axis) with constant velocity from x¯®¢ to x¯¢ in an inviscid fluid
of constant density and infinite extent. But neither Ursell nor Longuet-Higgins
conceived the notion of drift mass per period (in time) of the waves, and Darwin
already knew that his drift mass is ill defined, since the defining integral is not
uniformly convergent, but is dependent on how infinity is approached. Further studies
of Darwin’s problem can be found in Yih (1985, 1995) and Eames, Belcher & Hunt
(1994). In this article we shall show that the drift mass per period is well defined for
water waves and sound waves, and that this mass is simply related to the kinetic energy
and momentum per wavelength. The method used is the same as that used in Yih’s
papers, but the problem is physically different from Darwin’s.

In an especially enjoyable volume (vol. 106) of this Journal, McIntyre (1981) wrote
interestingly about the momentum of sound waves and waver waves. His quotation of
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Lewis Carroll† has, as it should, an intimate bearing on the thesis of his paper, which
is clearly stated in its title : on the ‘wave momentum’ myth. This article recounted the
controversy regarding sound-wave momentum between Rayleigh and others on the
one hand, and Brillouin and others (including McIntyre) on the other. The reader is
referred to McIntyre’s article for references on this controversy. Suffice it here to say
that the former group believed sound waves have momentum and the latter group
believed sound waves have only momentum flux, but not momentum. McIntyre gave
examples on sound waves and water waves to support the belief of his group.

Clearly, if there is no wave momentum in all contexts and circumstances,
Levi-Civita’s result (1912, 1921) would lead to the absurdity that a positive quantity
(the kinetic energy) is equal to zero, and (as will be shown in the next section) there
would be no drift mass and therefore no mass transport, in contradiction to the work
of Ursell and Longuet-Higgins. Since the present work generally agrees with the work
of all these authors, it is incumbent upon me to explain that wave momentum need not
be zero, and even if circumstances are such that it is, the non-zero wave momentum
obtained herein will still retain its significance. I shall assume this burden after my
results have been presented.

2. Two-dimensional periodic water waves

Consider an infinite train of two-dimensional periodic waves propagating with speed
c in the direction of decreasing x in water of depth h, which can be infinite. The
amplitude of the waves can be finite, and the waves do not have to be symmetric with
respect to their crests. The flow is assumed irrotational, and in a frame moving with the
waves the velocity potential φ is

φ¯ cxφ«(x, y), (1)

where y is measured vertically upward, and φ«(x, y)¯φ«(x«ct, y), with x« and y
denoting the coordinates in a stationary frame of reference and t denoting time.

For symmetric waves, such as the waves treated by Stokes (1847) and Struik (1926),

φ«(0, y)¯φ«(λ, y)¯ 0, (2)

where λ is the wavelength, if x is measured from the position of a crest. But (2) is not
necessary. All we need is

φ«(0, y)¯φ«(λ, y), (3)

which applies not only to the familiar symmetric waves, but also to the unsymmetric
ones discovered by Chen & Saffman (1980) and investigated by others, as cited in
Benjamin’s recent paper (1995). All we require is strict periodicity. Then (3) gives

φ(0, y)¯φ(λ, y)®cλ. (4)

Now consider the domain D bounded by x¯ 0, x¯λ, the flat bottom, and the free
surface. We have

(u, �)¯ (φ
x
,φ

y
), (u«, �«)¯ (φ!

x
,φ!

y
), (5)

where (u, �) is the velocity in the moving frame of reference, and (u«, �«) is the velocity
in the frame at rest. Thus

u¯ cu«, �¯ �«. (6)

† The British seem to be perennially fascinated by this author. Other Cantabrigians H. and B. S.
Jeffreys (1956) cited him under the titles of three of the twenty five chapters of their book. No other
author was cited more than once this way.
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The kinetic energy per wavelength is, with ρ denoting the density,

KE¯
1

2&& ρ(u«#�«#) dxdy

¯
1

2&& ρ[(u®c)#�#] dxdy¯ "

#
I, (7)

which defines I. It is clear that
I¯ c# I

"
®I

#
, (8)

where

I
"
¯&& ρ 01®

u

c1dxdy, I
#
¯&& ρ(cu®q#) dxdy, (9)

with
q#¯ u#�#. (10)

All integrations are carried out in D. For two-dimensional waves, ‘per unit width along
a crest ’ is always implied regarding kinetic energy, momentum, etc.

We now seek the meaning of I
"
. Obviously ®cI

"
is the momentum M per

wavelength. But there is another, purely kinematic, meaning. The best way of seeing
it is to consider the mass m

d
(per unit width along a crest) discharged in one period at

any given x«, say x«¯ 0, in the frame at rest. Obviously

®m
d
¯&T

!

ρ 9 & u«dy:dt, (11)

where T¯λ}c is the period, and u« is a function of y and t, and the minus sign is
provided in anticipation that the integral is negative. The limits of the inner integral are
the bottom and the free surface. But

x®ct¯x«¯ 0, cdt¯dx, (12)

so that (12) can be written as

®m
d
¯

1

c & 9 &
λ

!

ρu«dx:dy¯&& ρ
u«
c

dxdy¯®I
"
, or m

d
¯ I

"
. (13)

In (13), u« has been considered a function of x and y. It will presently be shown that
I
"

is positive. Thus the integral in (13) is negative, indicating a drift to the left.
Since, as mentioned before, ®cI

"
is the momentum M, we have, from (13),

M¯®m
d
c, (14)

the negative sign indicating that the momentum is to the left, that is, in the direction
of propagation. (For waves travelling to the right, the minus sign should be dropped.)

As for the integral I
#

in (6), we can write

I
#
¯&& ρ 0cuq#

®11dφdψ, (15)

since

q#¯
¥(φ,ψ)

¥(x, y)
, (16)

where ψ is the stream function and the harmonic conjugate of φ. But

u

q#

¯
¥x
¥φ

,

so that
I
#
¯ 0, (17)
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by virtue of (4). Thus (7), (8), (14) and (17) give

KE¯ "

#
m

d
c#. (18)

Equations (15) and (18) say that m
d

plays the role of a momentum mass m
m

and of a
kinetic-energy mass m

k
, or

m
d
¯m

m
¯m

k
. (19)

We note that with (17), (8) becomes I¯ c# I
"
, which was a result of Levi-Civita (1912,

1921). The proof of (17) is considerably shorter than Levi-Civita’s proof.

3. Three-dimensional periodic water waves

For three-dimensional waves we can still use (1), but now φ and φ« depend on x, y,
and the third Cartesian coordinate z, measured horizontally in a direction normal to
the x-axis. For periodic waves propagating in the direction of (decreasing) x, again we
assume, in the moving frame of reference

φ«(0, y, z)¯φ«(λ
x
, y, z), (20)

where λ
x

is the wavelength in the x-direction. This can be written as

φ«(0, y, z)¯φ(λ
x
, y, z)®cλ

x
. (21)

The domain of integration is now bounded by the planes x¯ 0 and x¯λ
x
, the flat

bottom, the free surface, and the planes z¯ 0 and z¯λ
z
, where λ

z
is the wavelength

in the z-direction.
The kinetic energy is, with w indicating the velocity component in the z-direction,

KE¯
1

2&&& ρ[(u®c)#�#w#] dxdydz¯ "

#
I. (22)

Again
I¯ c# I

"
®I

#
, (23)

where

I
"
¯&&& ρ 01®

u

c1dxdydz, I
#
¯&&& ρ(cu®q#) dxdydz, (24)

with
q#¯ u#�#w#.

Using the stream functions ψ and χ, we have

(φ
x
,φ

y
,φ

z
)¯ (u, �,w)¯ gradψ¬gradχ. (25)

Thus

q#¯
¥(φ,ψ,χ)

¥(x, y, z)
¯ J,

u

q#

¯
1

J

¥(ψ,χ)

¥(y, z)
¯

¥x
¥φ

,

and again

I
#
¯&&& ρ 0cuq#

®11dφdψdχ

¯&&& ρ 0c ¥x
¥φ

®11dφdψdχ¯ 0, (26)
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on account of (21). The result (26) is new, for Levi-Civita (1912, 1921) proved (17) only
for two-dimensional water waves.

The same argument shows
I
"
¯m

d
, (27)

where m
d

is the drift mass per cell. The momentum M per cell is again

M¯®cm
d
, (28)

and (22), (23) and (26) show that
KE¯ "

#
m

d
c#. (29)

Thus the same results hold for three-dimensional periodic waves.

4. The special case of linear water waves

For two-dimensional linear water waves we have (x and y now for fixed frame)

φ!
xx

φ!
yy

¯ 0. (30)

The boundary condition at the bottom is

φ!
y
¯ 0 at y¯®h, (31)

and the free-surface conditions are

η
t
¯φ!

y
, φ!

t
0g

σk#

ρ 1 η¯ 0, (32)

where k is the wavenumber 2π}λ, λ being the wavelength, η is the free-surface
displacement from y¯ 0, and σ is the surface tension.

The solution, for waves going left, contains the factor (xct), so that

¥
¥t

¯ c
¥
¥x

. (33)

We shall now show the equipartition of energy when the effect of surface tension is
included. Multiplying (30) by φ« and integrating by parts, using (30) to (33), we have

2

ρ
(KE)¯&& (φ!

x
#φ!

y
#) dxdy¯&

λ

!

φ«φ!
y
dx¯&

λ

!

φ«η
t
dx¯®&

λ

!

ηφ!
t
dx. (34)

Thus, upon using the second equation in (32), we have (a¯ amplitude of η)

2

ρ
(KE)¯

ga#λ

2


σa#k#λ

2ρ
. (35)

But the surface energy per wavelength is

SE¯σ 9&
λ

!

(1η#
x
)"/#dx®λ]¯ "

%
σa#k#λ, (36)

upon neglecting terms of O(a%). Multiplying (35) by ρ}2, we see that

KE¯PESE, (37)
and (18) becomes

E¯m
d
c#, (38)

which resembles a famous formula in physics.
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The corresponding result for three-dimensional periodic linear waves can be as easily
obtained. We note that h can be infinite. For waves of finite amplitude, (37) is no longer
true, and the difference between its two sides may become significant. See Lighthill
(1978, figure 113).

Before turning to sound waves, we note that the result (14) is true even for solitary
waves, but (18) depends on the vanishing of I

#
, which is not zero for solitary waves.

Thus (18) does not hold for such waves. We note, however that I
#

is equal to
ρh[φ«(¢)®φ«(®¢)], and therefore to the integral of u« between y¯®h and y¯ 0.
Thus, I

#
is exactly the momentum of the fluid in that strip. Hence, instead of saying

2 (KE) is equal to ®cM (for a solitary wave going to the left), (8) simply says that
2 (KE)¯®c times the momentum of the fluid above y¯ 0. This result for solitary
waves escaped the attention of both McCowan (1891) and Longuet-Higgins (1974), who
re-derived McCowan’s result, which is (B) of Longuet-Higgins (1974). In it, Longuet-
Higgins identified φ«(¢)®φ«(¢) only as a circulation C, thus narrowly missed its
momentum interpretation. We note also that in a paper on periodic waves (Longuet-
Higgins 1975), the kinematic significance of ®M}c, which in our notation is the drift
mass per time period (for waves going to the left), also escaped his notice.

Note also that if we abandon the requirement of irrotationality, the derivation of
(14) remains intact, and can be applied to internal water waves. The amplitude for
these waves, with vorticity in general, can be finite. But (17) and (18) are lost. Similarly,
for three-dimensional internal waves, (27) and (28) stand, but I

#
is no longer zero in

general, and (29) is lost.

5. Sound waves

Solutions for linear sound waves are well known. For nonlinear sound waves
propagating uni-directionally, the method of characteristics can be applied. But no
solutions for periodic nonlinear sound waves seem to be known. However, their
existence can hardly be doubted, since sound waves are a daily experience and although
their amplitude is small any measurable amplitude is finite, and the governing
equations are nonlinear. The question is only how large the amplitude can be. One
fears that the characteristics may converge in the compression regions to form caustics,
indicating impending shock waves. But in periodic sound waves regions of rarefaction
follow those of compression, and before caustics can form in the compression regions
they may diverge in the rarefaction ones, thus preventing caustics from ever forming.
We shall assume the existence of nonlinear periodic sound waves and proceed on that
assumption, being quite assured that the results will at least apply to linear periodic
sound waves.

The analysis follows closely that for water waves. We assume the fluid to be
homentropic and the flow to be irrotational and periodic, with the waves going left
with speed c. For two-dimensional waves, equations (1)–(14) remain intact, but ρ is
now variable, and the domain of integration D is now bounded by x¯ 0, x¯λ, y¯ 0,
and y¯ 1 (say). In particular, we have (8), (13) and (14). To show that I

#
¯ 0, we recall

that
(ρu, ρ�)¯ ρ

!
(ψ

y
,®ψ

x
), (39)

where ψ is the stream function and ρ
!
a reference density. Since (5) still stands, we have

ρq#¯ ρ
!
J, J¯

¥(φ,ψ)

¥(x, y)
, (40)

where q# is defined by (10).
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Then, with c now indicating the sound speed,

I
#
¯&& ρ

! 0cuq#

®11dφdψ. (41)

Since

u

q#

¯
¥x
¥φ

, (42)

we have, on account of (4),
I
#
¯ 0, (43)

which was not known before. Then (8) and (13) give the new results

2KE¯m
d
c#¯®Mc. (44)

The three-dimensional case can be similarly treated. Again we take a wave cell.
Instead of (25) we have

(φ
x
,φ

y
,φ

y
)¯ (u, �,w)¯

ρ
!

ρ
gradψ¬gradχ, (45)

and the rest follows, mutatis mutandis, the development for water waves. Again we
have (27), (28) and (29), now for three-dimensional sound waves. These results are
entirely new.

Clearly, the method employed here is that used by Yih (1995). But the problem
treated now is physically different, since there is no body moving in the fluid now, as
assumed in Yih (1995).

For linear sound waves, Lighthill (1978, p. 13) showed that the kinetic energy and
the potential energy per wavelength are equal. Hence (38) again stands, now for linear
sound waves.

6. The reality and significance of wave momentum

Now we shall attempt to reconcile our position (and Levi-Civita’s and Rayleigh’s)
on wave momentum with McIntyre’s (and Brillouin’s). McIntyre gave the simple
example of sound waves produced by a solid plane oscillating about a fixed mean
position in a tube containing air (say), with a perfect absorber, also oscillating about
a fixed mean position somewhere down the tube – ‘perfect ’ in the sense that no part
of the waves is reflected. Then of course the air is going nowhere in the mean, and the
mean momentum, or momentum per wavelength, must be zero, as well as the drift
mass. This is a compelling example.

But does that example represent the usual mathematical solution for (linear) sound
waves? Are there other examples of physically produced sound waves that can have a
non-zero momentum per wavelength?

For ease of exposition, let the meaning of symbols m
d

and M be as in §5. Now take
the well-known linear solution for sound waves, and compute the momentum and drift
mass per wavelength. We get M and m

d
, respectively, which are not zero. This means

that McIntyre’s example is not represented by the usual mathematical solution for
linear sound waves, which we shall call S

"
. This answers the first question posed

above – in the negative. The solution, which we shall call S
#
, that represents sound

waves in McIntyre’s example is S
"
S

$
, where S

$
corresponds to a uniform flow with

the mass-transport speed (defined as m
d
}ρT, T being the period) in the direction

opposite to that of wave propagation. This obviously will allow two solid plates to
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oscillate about fixed positions, and S
#

obviously remains a solution of the governing
equations, amounting to a solution for sound waves propagating against a slight wind.
The only effect on a sensor fixed on the wall of the tube would be a slightly reduced
frequency (from that of the oscillating plates), due to the Doppler effect.

The question then is whether all physically produced sound waves in a tube are
represented by McIntyre’s example. This is the second question posed above.
Immediately and naturally, wind instruments come to mind. In none of these can a
mass transport be ruled out. Wind is blown into them when they are played. This is
how they acquired their group name. Even if this is less obvious in the case of the flute,
the opening at the mouth pad would allow air to be entrained into the tube.
Entrainment can be expected if, for another instance, a tube open at its ends is held at
a distance from a sound emitter placed near one end of the tube.

Even in McIntyre’s example, the kinetic energy is related to the difference in
frequency between the sound emitter and the sound sensor in the tube, and that
difference is intimately related to our m

d
or M. So that momentum which is called a

‘myth’ by McIntyre is intimately and simply related to measurable quantities (KE and
the Doppler shift), which are real.

Let us now turn to water waves, for which the reconciliation with McIntyre’s
contention is even more interesting. McIntyre considered, in effect, two water-wave
trains created by a wave maker (e.g. by a pressure oscillatorily acting on a part of the
water surface for a period of time), one going to the right and the other to the left. It
is sufficient to take one of them, say the one going to the right, after sufficient time has
elapsed for the two trains to be far apart, and for the transient effects to become
negligible. This seems to be McIntyre’s intent when he presented his figure 2, in which
he took into account the rate of mass transport (a' la Ursell and Longuet-Higgins!) by
a source at the head of the wave group and a sink at its tail, thus creating an irrotational
back flow. The weakness of this flow allows him to regard the water surface as rigid
as far as this flow is concerned. The concentrated source and sink can be replaced by
source and sink distributions, but for a discussion of McIntyre’s claim there is no point
for that elaboration. The back flow obviously and necessarily (as a result of intention)
cancels the drift mass m

d
in §2, and therefore the momentum M. Again it is a

compelling example, for a wave train of finite length is more realistic than one that is
infinitely long, for which the back flow is obscured.

But, does it represent all water waves in all circumstances? Imagine a canal
connecting two very large reservoirs, with equal surface elevations when at rest. Then
imagine waves approaching one end of the canal. Part of the waves will enter the canal
and through it the other reservoir. Can one say there is no wave momentum and no
mass entrainment into and transport through the canal? This example is similar to the
one for sound waves entering a tube from a source outside of it.

More importantly, even in McIntyre’s example wave momentum cannot be
dismissed as a mere ‘myth’. The strength of the source or sink in figure 2 of McIntyre
(1981) is the rate of mass transport (divided by the density ρ) calculated by Ursell
(1953) and Longuet-Higgins (1953) for linear water waves, or just our m

d
}ρT for linear

or nonlinear water waves. It is independent of the length of the wave group. For a fixed
wavelength, when the depth of the ocean and the length of the group both become
larger and larger, the velocity of the back flow away from the ends of the group
becomes weaker and weaker, and approaches zero as a limit. If one calculates the drift
mass as in §2, integrating to a depth equal to several (say 5) wavelengths, one obtains
a value very close to m

d
or M}c (for waves going to the right). Doubling or tripling the

depth of integration makes a negligible difference. Of course, integration all the way to
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the bottom would indeed give the value zero. But the definite value very close to m
d
or

M}c obtained by integrating part of the way cannot be dismissed as a myth. It is very
relevant to the mean force exerted by water on a floating body, or to the spread of
pollutants or solutes in the upper layer (wave layer) of the ocean.

This m
d

(or M) held in a widespread thin counter current is reminiscent of the value
of Darwin’s drift mass, when it is calculated by integrating longitudinally first. That
value is equal to the added mass, which we shall denote by m

a
. When it is calculated

by integrating transversely first (in planes x¯³x
!
,x

!
large) one gets a value different

from m
a
. The difference is, however, spread over a large distance or area, and if one

carries out the transverse integration over a distance or area 5–10 times the body size
one obtains a value very close to m

a
. Again this drift mass (nearly) equal to m

a
is held

in a weak widely spread back flow. Whereas this back flow merely reduces the drift
mass to zero in McIntyre’s example, it makes the total calculated drift mass negative
in Darwin’s problem, turning the drift into a reflux. This little difference apart, the
similarity of the situations is interesting, especially the significance, in both instances,
of a quantity (m

a
, or our m

d
or M) embedded in a widely spread weak current, which

does not quite manage to hide it.
Finally, it is appropriate here to mention that for two-dimensional water waves

propagating in the x-direction with speed c, the rate of flow of energy (KEPE)
through a section with constant x is equal to c times the flux of moment in the x-
direction through the same section. See Wehausen & Laitone (1960, equation (8.5)).
But here the drift mass plays no recognizable role, except in the special case of linear
two-dimensional waves in very deep water, provided the effect of surface tension is
neglected. In this case it is known that the energy flux through a section of constant x
per time period T is exactly one half the energy E in one wavelength, because the group
velocity is half the phase velocity. Since the energy is equally partitioned into its kinetic
and potential parts, the energy flux in T is exactly the kinetic energy in one wavelength,
given by (18). There is a corresponding result for one-dimensional linear sound waves.
Since these are non-dispersive, so that the group velocity is equal to the phase velocity,
the energy flux in one time period is exactly the E given by (38), with c now indicating
the sound speed. So in these two special cases at least, the drift mass is significant even
in the rate of energy flow. Energy flux and momentum flux in water waves have been
treated by Starr (1947), Platzman (1947), and Starr & Platzman (1948). See Wehausen
& Laitone (1960, pp. 718–723).
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